Schnee- und Loipenbericht

Kampenwand über Piesenhausener Hochalm

Bergtour (mit Hochplattenbahn) zur Piesenhausener Hochalm und weiter zum Gipfel der Kampenwand, mit einzigartigen Ausblicken und Almbrotzeit

12.3 km

Distanz

4:45 Std

Dauer

1664 m

Höchster Punkt

817 m

Höhenmeter aufwärts

813 m

Höhenmeter abwärts

Schwierigkeitsgrad
schwer


Tourenbeschreibung

Gipfelwanderung

Einkehrmöglichkeiten: Berggasthof Staffn-Alm, Piesenhausener Hochalm (*), Steinling Alm (mit Umweg) (*) almtypische Brotzeit, Kaffee und Kuchen (bitte individuelle Öffnungszeiten beachten) 

Achental Wandernadel Kontrollstellen: Staffn-Alm, Steinling Alm

Besonderheiten: Wanderung durch die Gipfelkluft des Kampenwandmassivs

Beschreibung: Die Wanderung beginnt an der Bergstation der Hochplattenbahn. Der sehr gut ausgebaute Forstweg ist ein Teilstück des “E4” (Europäischer Fernwanderweg „Pyrenäen-Neusiedler See“) sowie des „Maximiliansweges“ und der „Via Alpina“. Als Aufstiegsvariante wählen wir den “Alten Plattenweg” und biegen deshalb nach ca. 800 Metern rechts Richtung Piesenhausener Hochalm ab. Bald erreichen wir die Forststraße und gleich danach den Einstieg nach links in Richtung Kampenwand. Es ist ein relativ anspruchsvoller Weg, der Trittsicherheit erfordert. Am Ende des Weges treffen wir wieder auf die Forststraße. Nach rechts gehend erreichen wir nach kurzer Zeit die Piesenhausener Hochalm. Die Alm lädt mit Getränken und almüblichen Speisen zum Verweilen ein. Der Blick auf den Chiemsee, die Kampenwand, die Hochplatte und auch ins Schlechinger Tal ist atemberaubend. Von hier aus geht es weiter zur Kampenwand. Der Weg über die Wiesen zur Kampenwand erfordert Trittsicherheit. Nach etwa einer Stunde ab der Hochalm gelangen wir auf dem Weg zu einer Kreuzung, die nach rechts hinunter zur Steinling Alm führt.  Wir folgen aber geradeaus einem steilen Steig aufwärts zur Kampenwand. Der Klettersteig ist zwar kurz, ist aber sehr anspruchsvoll und nach ca. 30 Minuten gelangen wir zum mächtigen Gipfelkreuz. Beim Rückweg können wir alternativ auch über die sogenannten Kaisersäle absteigen. Auch dieser Abstieg ist anspruchsvoll, wir können uns aber an der nach ca. 30 Minuten erreichten Steinling Alm ausruhen. Der Rückweg nach Marquartstein führt uns am unteren Teil der Kampenwand entlang in Richtung des Sattels. Für diese Alternativroute müssen wir ca. eine Stunde zusätzliche Zeit einplanen. Vorbei an der Piesenhausener Hochalm gelangen wir wieder zun Einstieg in den Alten Plattenweg, setzen aber nun die Tour in Richtung Hochplatte fort. Am Sattel des Haberspitz könnten wir jetzt nach rechts zur Hochplatte aufsteigen, wir gehen aber abwärts, vorbei an der Plattenalm und erreichen schließlich wieder den Ausgangspunkt unserer Wanderung.

 

Beste Jahrezeit

Jan
Feb
Mär
Apr
Mai
Jun
Jul
Aug
Sep
Okt
Nov
Dez

Tour-Eigenschaften

mit Bergbahn/Lift erreichbar

Einkehrmöglichkeit

[["12.419655,47.767411,1038 12.419725,47.767341,1037 12.419497,47.767128,1039 12.418448,47.766788,1046 12.418252,47.766677,1046 12.417398,47.766487,1052 12.416387,47.766043,1064 12.415914,47.765747,1072 12.415245,47.765529,1082 12.415152,47.765466,1083 12.415088,47.765299,1082 12.415089,47.765065,1078 12.415042,47.764945,1077 12.414852,47.764761,1076 12.413915,47.764474,1092 12.413609,47.76404,1101 12.411898,47.763571,1138 12.411857,47.763145,1141 12.411532,47.762888,1152 12.411454,47.76291,1155 12.411376,47.763029,1156 12.410816,47.763459,1160 12.409674,47.763777,1172 12.409024,47.764298,1171 12.408665,47.764499,1174 12.408448,47.764531,1177 12.408156,47.764454,1186 12.40821,47.764168,1195 12.408059,47.764001,1206 12.40791,47.763964,1212 12.407661,47.764038,1215 12.407445,47.764398,1203 12.406773,47.7646,1203 12.406767,47.764527,1206 12.407016,47.76418,1221 12.407069,47.763677,1249 12.407934,47.762276,1290 12.408043,47.761886,1303 12.408151,47.761737,1303 12.408228,47.761344,1311 12.408453,47.760952,1303 12.408247,47.760379,1313 12.408117,47.760301,1319 12.408109,47.760211,1320 12.408014,47.76012,1323 12.407725,47.759966,1336 12.407555,47.759447,1331 12.407294,47.75909,1328 12.407006,47.758947,1331 12.406804,47.758934,1336 12.406644,47.758841,1336 12.404971,47.758319,1353 12.404767,47.758171,1352 12.404546,47.757889,1354 12.404345,47.757783,1354 12.404282,47.75768,1357 12.404055,47.757573,1356 12.403767,47.757233,1360 12.403861,47.757082,1370 12.403725,47.756842,1376 12.403214,47.756278,1386 12.402981,47.756129,1383 12.402735,47.755865,1381 12.402221,47.754952,1392 12.401925,47.754713,1389 12.401672,47.754709,1382 12.40119,47.754516,1372 12.400723,47.754388,1363 12.400304,47.754188,1355 12.400195,47.754085,1351 12.399699,47.753924,1338 12.399192,47.754054,1332 12.398579,47.754152,1324 12.397298,47.753962,1308 12.395991,47.753832,1298 12.39423,47.753845,1293 12.39399,47.753893,1298 12.393715,47.753798,1299 12.393291,47.753807,1307 12.392915,47.753634,1309 12.392104,47.753592,1322 12.391423,47.753339,1325 12.391079,47.753296,1327 12.390741,47.753307,1327 12.390274,47.753135,1318 12.390177,47.753153,1316 12.389504,47.753472,1315 12.388973,47.753544,1311 12.38863,47.753657,1311 12.388223,47.753663,1307 12.387539,47.753774,1305 12.386313,47.753836,1312 12.38513,47.754063,1339 12.383621,47.753959,1368 12.383018,47.753818,1378 12.382492,47.75363,1394 12.382124,47.753419,1409 12.3818,47.753072,1423 12.381663,47.753102,1428 12.381376,47.752905,1438 12.3813,47.75279,1439 12.380854,47.752559,1443 12.380807,47.752366,1437 12.380886,47.752185,1430 12.380857,47.752026,1426 12.380665,47.751919,1423 12.379692,47.75214,1407 12.378164,47.752658,1395 12.37787,47.75267,1388 12.377651,47.752787,1389 12.377334,47.752849,1381 12.377237,47.752923,1384 12.376606,47.753145,1389 12.376513,47.753291,1401 12.376103,47.753483,1417 12.375745,47.753533,1421 12.375462,47.753662,1433 12.375269,47.753669,1435 12.37505,47.753617,1431 12.374625,47.753651,1437 12.374084,47.753607,1439 12.373648,47.753565,1441 12.373501,47.753487,1436 12.373114,47.753446,1436 12.372578,47.753473,1441 12.372167,47.753264,1425 12.371924,47.753276,1423 12.371147,47.753515,1427 12.370367,47.753649,1431 12.370142,47.753761,1439 12.370172,47.753802,1442 12.370379,47.753724,1437 12.370546,47.753749,1442 12.370535,47.753897,1453 12.370208,47.75406,1462 12.369549,47.754522,1492 12.369601,47.754561,1495 12.369229,47.754856,1513 12.369304,47.754949,1522 12.369112,47.755171,1537 12.369067,47.755426,1558 12.369109,47.755564,1570 12.369001,47.755713,1584 12.369048,47.75578,1590 12.368952,47.755944,1605 12.368849,47.756002,1610 12.368962,47.75612,1617 12.368856,47.756168,1620 12.36869,47.756104,1616 12.368676,47.756067,1614 12.368362,47.755993,1606 12.368676,47.756067,1614 12.36869,47.756104,1616 12.368856,47.756168,1620 12.368962,47.75612,1617 12.368849,47.756002,1610 12.368952,47.755944,1605 12.369048,47.75578,1590 12.369001,47.755713,1584 12.369109,47.755564,1570 12.369067,47.755426,1558 12.369112,47.755171,1537 12.369304,47.754949,1522 12.369229,47.754856,1513 12.369601,47.754561,1495 12.369549,47.754522,1492 12.370208,47.75406,1462 12.370535,47.753897,1453 12.370546,47.753749,1442 12.370379,47.753724,1437 12.370172,47.753802,1442 12.370142,47.753761,1439 12.370367,47.753649,1431 12.371147,47.753515,1427 12.371924,47.753276,1423 12.372167,47.753264,1425 12.372578,47.753473,1441 12.373114,47.753446,1436 12.373501,47.753487,1436 12.373648,47.753565,1441 12.374084,47.753607,1439 12.374625,47.753651,1437 12.37505,47.753617,1431 12.375269,47.753669,1435 12.375462,47.753662,1433 12.375745,47.753533,1421 12.376103,47.753483,1417 12.376513,47.753291,1401 12.376606,47.753145,1389 12.377237,47.752923,1384 12.377334,47.752849,1381 12.377651,47.752787,1389 12.37787,47.75267,1388 12.378164,47.752658,1395 12.379692,47.75214,1407 12.380665,47.751919,1423 12.380857,47.752026,1426 12.380886,47.752185,1430 12.380807,47.752366,1437 12.380854,47.752559,1443 12.3813,47.75279,1439 12.381376,47.752905,1438 12.381663,47.753102,1428 12.3818,47.753072,1423 12.382124,47.753419,1409 12.382492,47.75363,1394 12.383018,47.753818,1378 12.383621,47.753959,1368 12.38513,47.754063,1339 12.386313,47.753836,1312 12.387539,47.753774,1305 12.388223,47.753663,1307 12.38863,47.753657,1311 12.388973,47.753544,1311 12.389504,47.753472,1315 12.390177,47.753153,1316 12.390274,47.753135,1318 12.390741,47.753307,1327 12.391079,47.753296,1327 12.391423,47.753339,1325 12.392104,47.753592,1322 12.392915,47.753634,1309 12.393291,47.753807,1307 12.393715,47.753798,1299 12.39399,47.753893,1298 12.39423,47.753845,1293 12.395991,47.753832,1298 12.397298,47.753962,1308 12.398579,47.754152,1324 12.399192,47.754054,1332 12.399699,47.753924,1338 12.399957,47.753986,1345 12.399995,47.753894,1343 12.400156,47.753747,1341 12.400301,47.753708,1342 12.400535,47.753958,1355 12.401054,47.754108,1368 12.401602,47.754345,1384 12.401822,47.754333,1391 12.40197,47.754469,1394 12.402265,47.754552,1403 12.402904,47.754897,1413 12.403502,47.755469,1412 12.404065,47.755268,1428 12.405349,47.754707,1445 12.405458,47.754451,1452 12.405884,47.754109,1453 12.406182,47.753908,1450 12.406937,47.753576,1442 12.407866,47.753398,1435 12.408762,47.753389,1422 12.409655,47.753497,1399 12.410178,47.753692,1380 12.410865,47.753748,1378 12.410155,47.753958,1362 12.409266,47.754042,1363 12.409115,47.754149,1358 12.40898,47.754367,1347 12.408552,47.75469,1339 12.408038,47.754913,1343 12.408044,47.755234,1336 12.408214,47.755565,1323 12.407198,47.756388,1317 12.406928,47.7565,1318 12.406732,47.757281,1302 12.406811,47.757364,1297 12.406892,47.757361,1295 12.407148,47.757113,1292 12.407295,47.75709,1288 12.407574,47.757419,1274 12.407627,47.757625,1270 12.408135,47.757828,1256 12.408348,47.758063,1251 12.409523,47.758923,1228 12.410305,47.759796,1215 12.410662,47.760386,1202 12.410735,47.760628,1198 12.410447,47.760839,1210 12.410357,47.761035,1213 12.410576,47.761455,1200 12.410795,47.761613,1190 12.410884,47.761985,1184 12.410943,47.762023,1181 12.411167,47.762527,1169 12.411494,47.762791,1154 12.411532,47.762888,1152 12.411857,47.763145,1141 12.411898,47.763571,1138 12.413609,47.76404,1101 12.413915,47.764474,1092 12.414852,47.764761,1076 12.415042,47.764945,1077 12.415089,47.765065,1078 12.415088,47.765299,1082 12.415152,47.765466,1083 12.415245,47.765529,1082 12.415914,47.765747,1072 12.416387,47.766043,1064 12.417398,47.766487,1052 12.418252,47.766677,1046 12.418448,47.766788,1046 12.419497,47.767128,1039 12.419725,47.767341,1037 12.419655,47.767411,1038"]]

Almwanderungen im Achental

0:00
0:00